
Cofinite Unary Languages
for nondeterministic finite automata

Zan Xu, Eric Shen

University of Maryland, College Park



Introduction



What are finite automata?

Imagine a computer with a very limited memory. It can only be set to
one of several states.

The only things it can know are its current state and the next input.

This is how most real-world systems work: think chemical reactions,
game theory, regex.

1



Input and output

At each step, it changes states based on the current state and the
next input character.

• Characters are limited to an alphabet.
• A sequence of characters is known as a word.

The automaton outputs once it has processed the entire word. Its
output is boolean; it either accepts or rejects based on the final
state.

a bb c

2



Example

0 1 20
0

01

1
1

start

An automaton for divisibility by 3. The input word should be a binary
string.

3



Adding nondeterminism

That was a deterministic finite automaton. For every (state,
character) pair, the automaton will move to another specific state.

But what if we could move to multiple states at once?

4



NFA example

0 1 20,1
00

start

This NFA accepts only strings that end in ‘00’. If at least one of the
states the machine ends on is an accept state, then the entire

automaton accepts.

5



Research Problem



Cofinite Unary Languages

Definitions

Cofinite Rejects a finite set of words
Unary Our alphabet only has one character

Language A set of words that an automaton accepts

We’ll call only character a. We’ll use ai to refer to a word of length ai,
so a30 would be the word “aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa”.

6



Problem

Given a cofinite unary language, how small can we make our NFA?

7



Background



Frobenius coin problem

• If I have some coprime denominations of coins, what is the
biggest amount of money I cannot make using these types of
coins?

• For the 2 coin case, if the coins are m and n the biggest amount
you cannot make is mn−m− n.

8



Frobenius coin problem

• If I have some coprime denominations of coins, what is the
biggest amount of money I cannot make using these types of
coins?

• For the 2 coin case, if the coins are m and n the biggest amount
you cannot make is mn−m− n.

8



LOOP(c,d, e)

Consider 2 loops of c and d states respectively, starting from the
same accept state. The lengths of words accepted are diophantine
linear combinations of c,d, i.e., Cc+ Dd = n given discrete values.

We don’t have to start at the shared state though. Imagine if we
started e behind the accept state. Then we’d need our solutions to
have e more states to work, so our loops accept anything that’s
Cc+ Dd+ e.

9



LOOP(c,d, e) Diagram

c-d

start

e

accept

What’s the longest unary string not accepted by this loop?

10



Landau’s function

Landau’s function, g(n) is defined to be the maximum LCM of a
partition of n. Basically, for a given n, we want to find some prime
powers with the biggest product and sum ≤ n.

Example
Let n = 15. Then the best partition is {3, 5, 7} with product 105.

11



Prime power loops

Let’s run our word of length n through some (independent) loops of
size p1,p2, . . . ,pm. And, let’s construct these loops such that they
accept everything except for n mod pi for each loop pi.

Then the only string that’s rejected by all of them is the one that’s
equal to n mod pi for all pi.

Chinese Remainder Theorem
If you know n mod pi for some coprime p1,p2, . . . ,pm, then you can
uniquely determine n under

∏m
1 pi.

12



MN(1000, 1001, 1003)

s εε

ε ε

ε ε

s

1

2

18

12

13 15
1

3

s

2 4

10 s
1

2

s

2

7
1

3

s
2

1

6

s
s

13

1

15

2

3

0

33

32

ε

NFA for language {ai∀i ̸∈ {1000, 1001, 1003}}
13



MN({n})

In general, if we want to reject only some set of lengths S, we can’t
do better than

√
max(S) states. proof

If we’re only rejecting a single word an:

• The big c,d, e loop takes no more than
⌈√
n+ 2

⌉
states. proof

• For a given number of states Landau’s function gives us the
biggest n we can make prime powers for. This works out to be
under ln2 n.

14



MN({n, kn}) and beyond

If we’re rejecting a pair of words an,akn:

• The big c,d, e loop takes no more than
⌈√
n+ 3

⌉
states. proof

• Landau’s no longer works. However, the greedy result still yields
a result of O(log2 n+ 1) for the prime loops (not necessarily
prime powers anymore)

In general, the modular loops portion of a set of size ℓ uses at most
ℓ2 log2 n+ O(1) states. proof

15



Future Research

• Non-sparse missing numbers
• k<2 case

16



Ask questions
Ask for proofs

16



Frobenius Questions

Why are there chicken nuggets?
Before the introduction of the 4-piece chicken McNuggets,
McNuggets were sold in boxes of 6, 9, and 20. The most chicken
nuggets you cannot buy is 43. Finding the numbers of chicken
nuggets you cannot buy from McDonalds is an example of the
Frobenius problem.

back to slide



Landau’s Questions

How can the sum be less than n?
Because we can’t possibly decrease the LCM if we just include the
remainder.

Why is the optimal partition coprime?
Consider if they were ab and ac. Then we could use ab and c for a
smaller sum and the same product.

And prime powers?
If it’s composite e.g. ab we could use a and b separately for a more
efficient solution.

back to slide



Real-life applications

Why is this useful?
no



Proof of Chinese Remainder Thm

Proof
n 7→ {n mod p1,n mod p2, . . . } is injective over the domain [1,

∏
p]

because you can compute a unique set of mods for any n. By
fundamental counting principle are only

∏
p possible sets of

mods. Since the size of the domain and codomain are equal there
is a n for every set of mods.

back to slide



Bounds I: Minimum states required

Proof
Previous research [Chroback] showed that we can convert an NFA
of size m for a unary cofinite language to a chain of size ≤ m2

terminating in some disjoint loops via ϵ transitions. If we could
recognize MN(S) in fewer than

√
n states we could convert it into a

chain of size ≤ n terminating in some cycles. Therefore if we plug
an in it will terminate in the cycles. But since our loops are periodic
that would mean there is an infinite number of other words also
accepted, and so our language is no longer cofinite. By
contradiction our NFA must take at least

√
n states.

back to slide



Bounds II: c,d, e loop takes
√
n+ O(1)

Proof
The loop c =

⌈√
n+ 1

⌉
, d = c+ 1, e ≡ n+ 1 (mod c) must reject n.

If it accepts n then by definition for some integer solutions:

cC+ (c+ 1)D+ e = n

n ≡ D+ e (mod c)

n− e ≡ D ≡ n− (n+ 1) ≡ −1 (mod c)

Therefore, since D is positive, D ≥ c− 1. But algebraically,
(c+ 1)D > n, yielding a contradiction.

back to slide



Bounds III: c,d, e loop takes
√
n+ O(1) for n, kn

Proof Outline

1. We solve the 1-element case for kn (see Bounds II).
2. We show that given that c,d,e, the loop rejects n if it falls in a
certain range (mod c).

3. We re-express this range in base c+ 1.
4. We show that for all but an edge case if it does not fall in the
range from step 2, then incrementing c,d and recalculating e
works if we reapply step 1.

5. We patch this edge case by changing base again and doing it all
over.

back to slide



Bounds IV: Mod loops must take ℓ2 log2 n

Proof Outline

1. Over all coprime sets B ⊂ N with
∏
B > N, min

∑
B ≤ log2 N

2. Then there’s a set of loops with N = nℓ

3. Construct this and plug in elements of S
4. Show that every other word that also goes through this NFA
must have size > Nℓ

back to slide



Bibliography

[1] M. Chrobak. Finite Automata and Unary languages. Theoretical
Computer Science, 47:149– 158, 1986.

[2] J.-P. Massias, J.-L. Nicolas, and G. Robin. Effective Bounds for the
Maximal Order of an Element in the Symmetric Group Math. Comp.,
53(188):665–678, 1989.


	Introduction
	Research Problem
	Background
	Appendix

